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Abstract—A singular hybrid finite element method for studying boundary-layer stresses in composite
laminates is presented. The laminate elasticity basis and the fundamental solution structure for the
boundary-layer field are briefly reviewed first. Formulation of a singular composite-edge element is based on
the recently developed boundary-layer theory and the variational principle of a modified hybrid functional. The
singular hybrid element is used conveniently in conjunction with displacement-based conventional elements.
Numerical solutions for the well-known Pipes-Pagano problem are presented for illustration. Comparisons of
the present solution with the laminate elasticity solution and conventional finite element results are made to
demonstrate the accuracy and efficiency of the present approach. Influences of eigenfunction truncation, size
and aspect ratio of the singular hybrid element as well as mesh configuration are studied.

L INTRODUCTION

The presence of geometric boundaries has been well-known to introduce peculiar effects, i.e.
the so-called free-edge or boundary-layer effects, in a finite-dimensional composite laminate[1-
5]. A very complex state of stress with high gradients has been noted in the vicinity of the edge
due to the presence of interlaminar stress to keep the laminae in a state of equilibrium and
kinematic compatibility. Interlaminar and intralaminar fracture have been observed to initiate
frequently at the edges{6-10]. Laminate static strength and long-term structural load-carrying
capacity, especially under fatigne loading, have been closely related to the near-field be-
havior at laminate boundaries[7, 8, 11-13]. Thus an accurate solution for the boundary-layer
stress field is of critical importance in advancing our understanding of the complex fracture
behavior and in assisting the design and analyses against failure of composite materials and
structures.

Various approximate theories have been proposed in attempts to obtain analytical solutions
for the edge stress problem, for example, the higher-order plate theory by Pagano[14], the
perturbation approach by Hsu and Herakovich[15], the boundary-layer matching method by
Tang and Levy(16), and the recent development based on Reissner’s variational principle by
Pagano{17]. Numerical approaches such as finite element methods have also been
attempted{19-23] due to their versatility in handling complex problems in solid mechanics.
Resuits for the boundary-layer problem obtained from different numerical approaches have
shown some similarities. But discrepancies exist in the magnitude and even in the sign of
computed stresses in the boundary-layer region. With each refined formulation in the analyses,
the maximum value of stress at the laminate edge is shown to rise. Also, the edge stresses are
observed to increase as the element size progressively decreases. These discrepancies may
result in part from various approximations made in formulation of different analytical and
finite element models. But, in the authors’ opinion, the fundamental source of the disagreement
may be attributed to the singular nature of the boundary-layer stress field, which all of the
aforementioned approaches fail to account for. The quests, apparently, are to determine the order
of the stress singularity and to establish a complete solution for the problem by an appropriate
method. Recently, the exact order of the boundary-layer stresg singularity has been obtained for
anisotropic composite laminates by using the theory of anisotropic elasticity and an eigenfunction
expansion method [24].

In this paper, a new method of finite element analysis for solving the boundary-layer problem is
developed based on the recently obtained laminate elasticity solution{24) and the modified hybrid
variational functional in [25, 26]. A singular hybrid composite-edge element is constructed by using
the eigenfunction series (including both the dominant singular and higher-order terms) determined
from the laminate elasticity solution in Ref. [24]. The advanced hybrid, singular element used in
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conjunction with conventional isoparametric, quasi three-dimensional elements will be shown to
be especially suitable for examining the exact and detailed nature of the boundary-layer stress in
composite laminates with general lamination and geometric variables. The method of analysis. as
will be demonstrated later, provides extremely efficient computation and accurate solutions for the
composite boundary-layer problem.

2. LAMINATE ELASTICITY SOLUTION STRUCTURE
FOR STRESS AND DISPLACEMENT FIELDS

A laminate elasticity theory for boundary-layer stress singularities and complete stress
solutions has been given in Ref. [24] for finite-dimensional composite laminates. For the
convenience of later developments in this paper, some of the fundamental relationships in the
laminate elasticity solution are briefly introduced here; detailed derivation can be found in [24]
and is, therefore, omitted.

Consider a finite-width composite subjected to surface tractions acting in planes normal to
the generator of the lateral surface, i.e. the z-axis, without variation. The special case of a
composite laminate subjected to a uniform axial strain, ¢, = ¢,, along the z-axis (Fig. 1) hasreceived
much attention recently in the investigation of boundary-layer effects in composite laminates. The
composite is assumed to be sufficiently long that, in the region away from the ends, end effects are
negligible by virtue of Saint Venant's principle. Consequently, stresses in the laminate are
independent of the z-axis. This class of problems may be formulated on the basis of theory of
anisotropic elasticity by introducing Lekhnitskii's stress potentials, F(x, v} and ¥(x, y), as

_#F *F _ 3F
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Following the procedure given in Refs. [24,27), a system of coupled governing partial
differential equations for a composite lamina may be obtained as

{L3F+ LW =-2A,+ A8~ A, Sy,
L4F + Lg\y = 0,

where L,, Ly and L, are linear differential operators of the second, third and fourth orders. A,
A,, A, are constants related to laminate deformation, and S;; is the lamina compliance tensor.
Detailed forms of L; (i =2,3,4) and A, (j=1,2,3,4) are given in [24, 27].

Introducing the complex variables Z, = x + u,y and choosing the following expression for the
stress functions{27], F =3$_, F(Z) and ¥ = 3¢., nF{Z):

F{Z)=CZI* (8 + 15 +2), 3

45|k

Fig, 1. Geometry of a symmetric [8/ ~ 8/ — 6/8) composite laminate subjected to uniform axial extension.
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where C, and 8 are complex constants to be determined, one can easily show[24] that general
solutions for the stress and displacement have the following forms:
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n=l

X 3 - o
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if 8, are complex conjugate pairs; and
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if 8, are distinct and real, where A;, and T';, are constants related to lamina elastic constants; b,, are
known constants related to the eigenvectors, and c¢,;, and ¢, are unknown real constants
corresponding to the eigenvalue §,. Appropriate methods such as the hybrid finite element
technique, which will be discussed in the next section, may be used to determine these constants.
The o, and u,; are particular solutions for stress and displacement in a composite laminate
subjected to a given loading condition.

The eigenvalues §,, which are determined by using near-field traction boundary conditions
on free-edge surfaces and continuity conditions along the ply interface[24], provide important
information on the fundamental structure of boundary-layer field solutions. Due to positive
definiteness of strain energy of the elastic body, the eigenvalues §, bounded by

-1 <Re[5,]<0 (6)
characterize the order of the boundary-layer stress singularity.

3L FINITEELEMENT FORMULATION

For elasticity problems with stress singularities, it is well-known that using higher-order,
conventional (nonsingular) elements may not improve the rate of solution convergence[28]; hence,
a very fine mesh with a large number of degrees of freedom (DOF) is generally required. Among
various methods proposed for this class of problems, the recently developed hybrid finite elements
which incorporate analytical solutions in element formulation have been demonstrated to be most
successful. In this section, a hybrid composite-edge element is constructed for the boundary-layer
problem, based on the eigenfunction solution determined in Section 2 and the hybrid finite element
concept introduced in [25, 26).

3.1 Stiffness matrix formulation for singular hybrid boundary-layer (edge) element

To illustrate the basic scheme of stiffness matrix formulation for the composite boundary-
layer element, the well-known Pipes-Pagano problem([2] is considered here (Fig. 1) for
simplicity and without loss of generality. The element stiffness matrix is formulated on the basis
of a modified hybrid variational functional =,..(o, u, @) given in [25, 26].

For the present problem, the hybrid functional =,., can be shown[29] to have a slightly
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modified form as

(@, 0, ﬁ):” (aTe~%&T§&)dA— T (u- ) ds —f T*Ti ds —” 57e, dA+C,
Ay A, 50 Am

v

where A, is the area of the mth element; 4A,, is the boundary of A,; 55, is the portion of

eiement boundary 44,, where traction T* is prescribed; @ is the displacement vector defined
over the element boundary, and

&T = {UX’ O..V* T)'z! Taxs Txy}’ ET = {exv fyv 'sz! 721'9 ’ny}, (83)
—OT = {eoi} = {eox, €oys Yoyn Youxs ')’oxy}s uT = {ﬂ, v, w}* (8b)
with
-3 1%
€ = S33 €g, 0 2 S.33 (8¢)

and S={$;} is the reduced compliance matrix defined in [24]. Note that standard matrix
notations, S, &, & u and T, are used here to represent the compliance matrix, stress, strain, and
displacement in the element, and traction along the element boundary, respectively.

The hybrid finite element approach requires that the stress and displacement, & and w,
within the element and the boundary displacement, @i, be independently assumed. Since the
general structure of solutions for the laminate elasticity problem has been determined explicitly
in the previous section, the stress and displacement expressions given by eqns (4) and (5) can be
used directly for the hybrid element stiffness matrix formulation. Thus, the relationships for &
and u in the singular hybrid element can be immediately established as

-3 (3 Retr2 @0+ Imifo( 200 + o 92)
4y = "Zﬂ By (; {Relg(f(Z0)) + Im{gifte (201} + ey (9b)

if 8, are real, and N is the number of distinct, nonzero real §, selected; and

N-1

{are| ;‘, 19(20]+ 8o xm[z 1020} + 0w (10a)
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(i=1,2,45,6; j=12,3), (10b)

if 8, are complex conjugates, where N denotes the total number of terms in the truncated
eigenfunction series; the unknown stress parameters $; are real constants to be determined in
the finite element analysis, and fi’ and gif’ are known eigenfunctions determined from eqns (4)
and (5).

Expressed in matrix notation, the element stresses, boundary tractions and interior dis-
placements take the forms as

#=PB+d,, T=RBp+T, u=UB+u, (11)

where B7 ={B1, B2 B3 ...}, and &,, T, and u, are known quantities resulting from particular
solutions for stress and displacement. The problem of matching the singular hybrid composite-
edge element with adjacent nonsingular elements is resolved by expressing the boundary
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displacement @ in terms of element nodal displacement q as
i=Lg, (12)

where L is a matrix of properly selected shape functions defined along the hybrid element
boundary. The L is chosen such that, when corresponding nodal displacements of an adjacent
element are matched, i is the same for the two elements over the common boundaries.

In the present finite element approach, a nine-node, hybrid composite-edge element shown
in Fig. 2 with 27 degrees of freedom (3 DOF per node) is constructed. Standard quadratic
interpolation functions are used for the L to ensure matching the boundary displacements of the
singular hybrid element with those of adjacent eight-node (24 DOF), isoparametric regular
elements.

Following the similar formulation of derivation for hybrid finite elements{25, 26], the varia-
tional functional may now be expressed in terms of  and q as

,,m,l=_%anp+pTGq—B’l+Jq+C:, a3
where

H=% ®"U+U'R)ds, G=| R'Lds, (14a)

Ay, 0A
1=1 RTu ds+d UTT,,ds+1” PTe, dA, (14b)

2Joa, 2 Jia,, 2} Ja,
J= f T, Lds, (14c)
C*—C——I T, u,,ds—-[f G, € (14d)

Taking variation of ,, with respect to B and q, one obtains the stiffness matrix k, and
the consistent loading vector Q, for the hybrid composite-edge element as

k,=G"H''G (152)
Q. =G"H'1-JT, (15b)
y
7
7
SN
5 ‘ D X
7 b4

‘I 2 V3 dz" S(z)

Singulor Hybrid

€dge Elemen!

Fig. 2. Coordinates and a singular hybrid boundary-layer element for the composite free-edge probiem.
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with

B=H'Gq-D. (15¢)

3.2 Non-singuiar element formulation

The adjacent elements are formulated on the basis of generalized plane deformation
theory[27] and the minimum potential energy principle. Because no singularity is involved, for-
mulation of the displacement-based conventiona! elements is relatively simple. A constant-
strain triangular element of the same nature was first proposed by Herakovich et al.{19]. To
improve the rate of convergence and the accuracy of stress and displacement solutions adjacent
to the singular domain, a second-order, eight-node (24 DOF) isoparametric element is developed
in this study in conjunction with the construction of the singular hybrid composite-edge element.
Derivation of the stiffness matrix k, and the loading vector Q, for the far-field elements is reported
in [29].

3.3 Solution procedure

The matrices k, and k, are true stiffness matrices relating unknown nodal displacements to
nodal loading vectors. The standard procedure of the matrix-displacement method can be used
to assemble the global stiffness matrix and loading vector, K and Q, leading to the following
relationship:

Kq=Q, (16)
where the assemblage process may be expressed symbolically by

K= k" +k, (17a)

Q=X Q™+Q. (17b)

After the displacement solution q is determined, stresses at any point in the singuiar hybrid
element may be calculated by eqn (11), and boundary-layer stress intensity factors, K;, defined
in [24] can be obtained directly from the parameter 8, of eqn (15¢) in the hybrid finite element
formulation by

3
Ki=8, {kzl [Re(byAu) + Im(bl(km/\ukm)]} (18a)
K3= “S}folSﬂ {i = 13 2, 49 53 6)3 (lgb)
where the repeated subscript, i, refers to summation of associated quantities.

4 NUMERICAL RESULTS

To demonstrate the effectiveness and the efficiency of the present method of approach, a
symmetric angle-ply composite shown in Fig. 1 is considered. Numerical results on solution
accuracy, convergence, and several unique features of the method are given for a [45°/ —45°/ —
45°/45°} graphite-epoxy composite for illustration. The composite has a geometry (Fig. 1) of
blh=8 and hy=h,=h=0.25in., and elastic ply properties of unidirectional high-modulus
graphite-epoxy lamina identical to those in [2, 15, 21] are used. Due to geometric and lamination
symmetry, only a quarter of the cross sectional area is considered. Solutions are obtained first by
employing eight-node, isoparametric nonsingular elements only. A combination of the singular
hybrid element and nonsingular isoparametric elements (Fig. 3) is then used to examine the
boundary-layer field in detail. Comparisons of the present solutions with the laminate elasticity
solution[24] are made to illustrate the basic nature of computational mechanics for this singular
elasticity problem. Influences of eigenfunction truncation in the singular element formulation,
geometry of the special hybrid element, and the overall finite-element discretization on the
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Fig. 3. Singular hybrid element incorporated in a nonsingular isoparametric finite element mesh for the
boundary-layer problem in a composite laminate.

accuracy and efficiency of the present approach are discussed. Both the near-field stress (in terms
of boundary-layer stress intensity factors) and the overall stress distribution are examined.

In studying the accuracy and convergence of present numerical solutions, the boundary-
layer stress intensity factors K; given in Ref. {24] for the [45°/ — 45°/ — 45°/45°] graphite-epoxy
composite are used as a reference:

K°=057298 EO0, K,;’=-075345 El, K,°=-029523 E-I,
K =0.16443 E 2, Ks°=0.14440 E 1, K¢ =0, (19

where K carry the dimension of [psi-in"%] with &, = —0.02558.

4.1 Solutions by nonsingular, displacement-based finite elements

Results from displacement-based finite elements with several different meshes and from Ref.
[24] are shown in Fig. 4. (The m in the figure refers to the number of elements per ply through
the laminate thickness direction. For example, in the case of m =3, 78 elements with 273 nodes
are used.) The in-plane stresses, o, and r,, determined by the conventional elements
decrease as the laminate boundary (x/b = 1) is approached. These results are contrary to the
laminate elasticity solution[24]. Refining the mesh does not change the nature of the numerical
results. The discrepancy between the elasticity solution and the finite element solution increases as
the laminate edge is approached, owing to the boundary-layer stress singularity. The present
results support the assessment in [28] that conventiona! finite-element solutions generally converge
very slowly for elasticity problems with singularities. The discrepancy clearly indicates the need of
an advanced boundary-layer element to include the edge stress singularity for improved solutions.

4.2 Solutions by singular hybrid finite element method

A typical mesh consisting of the singular hybrid element and surrounding nonsingular
elements is shown in Fig. 3. The singular element contains two dissimilar materials and has a
square configuration unless specified otherwise. Numerical solutions obtained for the boundary-
layer stress by the singular hybrid FEM are found to differ from the reference elasticity
solution[24] within 2% in general. For illustration, stress solutions determined by the singular
hybrid element approach with several meshes are shown in Fig. 5. Also shown in the figure are
the results from Refs. {21, 24]. All the three different approaches yield the same results in the far
field. Near the laminate edge, deviations of o, and ., from Ref. [24] become significant and an
opposite trend of change in stress is observed. It is noted that the results given by [21] were obtained
from a mesh having a large number of constant-strain triangular elements (392 elements) with very
small size (sixteen elements per ply in the thickness direction). However, with much fewer
elements (c.g. 35 elements in the present case) the present singular hybrid element solutions are in
excellent agreement with the laminate elasticity solution[24].



S.S. WanG and F. G. Yuan

———- - Singulor Hybrid Finite Elements
(m=3, 129 Nodes)
- {m=3, 273 Nodes)

= | T (m=4,355 Nodes) » (Without Singular
o e {m=5, 437 Nodes) Element)
@ 20F ————— Boundary Collocation [e4)
©
x r
w
X
e}

1.0

0.0

00 o)) 10
x/b

Fig. 4. Comparison of stresses o; along the ply interface y = h from Ref. [24] with those from singular
hybrid finite-element and conventional finite-element solutions with different meshes.
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Fig. 5. Comparison of boundary-layer stress solutions -, 7. and 7,, along the 45°/ — 45° ply interface obtained
by various methods of analysis.
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Fig. 6. Comparison of interlaminar normal stress o, along the 45° - 45° ply interface obtained by various
methods of analysis.

Distributions of interlaminar stresses shown in Figs. 5 and 6 reveal some serious problems in
the conventional finite element approach. For example, the interlaminar normal stress o, near
the edge is shown to be highly compressive in the laminate elasticity solution, in the present
hybrid element approach, and in the isoparametric finite element analysis. This is apparently
opposite to the results of Ref. [21). The compressive o, is consistent with the negative values of
the boundary-layer stress intensity factor K;, i.e.

K,°=-0.75345 E 1 (from the laminate elasticity solution[24]),
K,=-073911 E 1 (from the present singular hybrid FEM), (20)

determined by the two independent approaches, both including the leading singular and higher
order terms in the formulation. Furthermore, K, is shown to be zero in both the elasticity
solution and the present singular hybrid element solution, which leads to a vanishing r,, at the
laminate boundary, where the conventional finite elements yield a high negative value (Fig. 7).

The discrepancies among these various approaches may result not only from the inclusion of
dominant singular terms in the present solution, but also from approximations introduced by
lengthy extrapolation required in conventional finite elements for determining stresses along the
ply interface and at laminate edges, where stress gradients change most appreciably. This situation

- == Singuior Hybrid
.3F
03 Finite Elements
Boundory Coll . {24]
............. Ref. [2
ozl fod
=
e
-
o 0.F
x
w
Y e
£ 0.0 05 <=0
x/b :
-0.F
-0.2

Fig. 7. Comparison of interlaminar shear stress 7., along the 45°/-45° ply interface obtained by various methods
of analysis.
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Fig. 8. Through-laminate-thickness distributions of o, and .. at x/b = 0.999 obtained by various methods of
analysis.
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Fig. 9. Through-laminate-thickness distributions of ., at x/b =10, 0.96 and 0.89, obtained by various
methods of analysis.

is illustrated in Figs. 8 and 9, in which boundary-layer stresses in the laminate thickness direction
are given. The o, and 7, in Fig. 8, for instance, change very rapidly within an extremely small
region near the ply interface, where conventional finite element approaches may fail to
approximate. However, the rapid change of stress gradient is clearly observed in the present
hybrid FEM results and the laminate elasticity solution{24].

4.3 Eigenfunction truncation in singular hybrid element formulation

In the hybrid element formulation, eigenfunction truncation, i.e. the number of terms used in
the eigenfunction series, needs to be considered properly. The influence of eigenfunction
truncation may be determined by examining the boundary-layer stress intensity solutions.
Results are given in Table 1 for the cases of different numbers of eigenfunctions, N, used in
analyzing the composite (35 elements and 129 nodes). The effect of eigenfunction truncation on
the hybrid element solution for the present problem is very small-—generally within a few
percent. For example, increasing the number of eigenfunctions from 9 to 23 only alters the
results by approximately 1%. Thus, incorporating the first few terms of the eigenfunction series
in the special hybrid element ensures the solution accuracy and convergence. Furthermore,
the use of only 35 elements (including the singular hybrid one), which gives a solution within 2%
of that in Ref. [24], clearly demonstrates the efficiency and the accuracy of the present method of
approach.
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Table 1. Effect of eigenfunction truncation in singular hybrid clement formulationt on free-edge stress
intensity factors$

K | 4 K K K K

N 1 Z 3 [ > 5.

9 0.56848 ~7.47524 -0.02929 16.31330 1.43265 0.
12 0.56282 -7.40137 ~0.02900 16.15210 1.41849 0.
17 0.56249 ~7.39644 -0.02898 16.14134 1.41755 0.
20 0.56208 ~7.39114 -0.028%6 16.12976 1.41653 0.
3 0.56208 -7.39114 -0.02896 16.12977 1.41653 Q.

1'Squ,are singular element with Ab = 2Ah and n = 0.4,

sAll Ki are scaled by 10%0.

4.4 Size effect of the singular hybrid element

The special hybrid element is required to cover a finite region of proper size so that the
behavior of the singular domain can be fully accounted for. Size effects of the hybrid element
on accuracy and convergence of the solution may be characterized by a nondimensional
parameter 7 defined as

_Ah _ linear dimension of the hybrid element an
K laminar thickness
where Ah and h are shown in Fig. 3. In the singuiar hybrid element analysis employing 20 terms in
the eigenfunction series, changing the n from 0.24 to 0.5 (i.e. the singular square element with its
linear dimension increasing from a quarter to a half lamina thickness) causes less than 1%
difference in the edge stress intensity solutions (Table 2). Thus the influence of the singular stress
domain is small and fully covered by the singular hybrid element, and stable and converged
solutions are obtainable. Also, very large singular elements, say, about a half ply thickness, can be
used to determine the edge stress field, thereby, giving efficient computation with much fewer
elements. Detailed results on the influence of size of the singular hybrid element on the
boundary-layer stress are given in [29]. :

Table 2. Influence of singular hybrid element sizet on boundary-layer stress intensity solutions

a L3y K, Ky K, Ks K
0.24 0.56226 ~7.39349 ~0.02897 16.13489 1.41698 0.
0.33 0.5624% ~7.39648 -0.02898 16.14143 1.41756 0.
0.4 0.56208 ~7,39114 -0.02896 16.12976 1.41653 0.
0.5 0.56477 ~7.,42649 -0.02910 16.20691 1.42331 0.

1'Sirugu].lr element with 4b = 2Ah and n = {Ah)}/h.

4.5 Influence of aspect ratio of the singular hybrid element
Another parameter that may affect the finite element solution is the aspect ratio of the
singular hybrid element, defined as

£= AR 22)

where Ab and 2Ah are the width and depth of the element, respectively. Numerical experiments
are conducted to identify the influence of ¢ on the boundary-layer stress solution. The cases of
£=10,2.34,3.75 and 6.25 have been examined, and results are given in Table 3 for illustration.
In studying the influence of the hybrid element aspect ratio, the number of nodes and elements are
retained the same so as to isolate the effect of changing £. The results given in the table indicate that
deviations of K from Ref. [24] are again observed within 1% in all cases investigated.
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Table 3. Effect of aspect ratio of singular hybrid elementt on boundary-layer stress intensity factors*

e 3 X X5 X4 Ks Xe
1.00  0.56208  -7.39114  -0.02896  16.12976  1.41653 0.
2.34 0.56438  -7.42137  -0.02908  16.19574  1.42232 0.
3.75  0.56484  -7.42738  -0.02910  16.20884  1.42348 0.
6.25  0.56525  -7.43286  -0.02912  16.22081  1.42453 0.

"¢ = 8b/(28h), (Ah)/h = 0.4, Ab changes with £.

*35 elements with 129 nodes and N =20 are used.

Table 4. Influence of the number of elements through lamina thickness, m, on boundary-layer stress intensity factors*

m %y ¥, Ky Xy Ks Ke
2 0.56207  -7.39095  -0.02896  16.129%  1.41650 0.
3 0.56208  -7.39114  -0.02896  16.12976  1.41653 0.
4 0.56209  -7.39119  -0.02896 16.12987  1.41654 0.
5 0.56200  -7.38120  -0.02896 16.12989 1.41654 0.

*N =20.0b=24h =04

4.6 Effects of the number of elements through lamina thickness

The rapid change of stress through laminate thickness in the boundary layer generally
requires a large number of elements with higher-order interpolation functions and very small
element size through the thickness direction in a conventional finite element approach. For
example, 16 elements per ply in the laminate-thickness direction were used in Ref. [21]. If,
however, functions with the exact order of stress singularities, such as the present eigenfunction
series, are included in the hybrid element formulation, fewer elements through ply thickness may
be required to provide an accurate description of the stress gradient. Thus, less computing effort
is needed and better results should be achieved. This is indeed observed in Table 4 in which the
K, remain almost unchanged when the number of elements per ply increases from 2 to 5. The
insensitivity of the K; to the number of elements through the laminate thickness direction clearly
illustrates the efficiency and the accuracy of the present approach. The accuracy and convergence
of the stress solutions with different numbers of elements in the lamina thickness direction are also
shown in Fig. 5. From the figure and Table 4, it is apparent that with fewer than two or three
elements per ply, the solution obtained by the singular hybrid finite element method can be very
accurate.
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